Copied to
clipboard

G = C22×C52⋊C3order 300 = 22·3·52

Direct product of C22 and C52⋊C3

direct product, metabelian, soluble, monomial, A-group

Aliases: C22×C52⋊C3, C1021C3, (C5×C10)⋊2C6, C523(C2×C6), SmallGroup(300,41)

Series: Derived Chief Lower central Upper central

C1C52 — C22×C52⋊C3
C1C52C52⋊C3C2×C52⋊C3 — C22×C52⋊C3
C52 — C22×C52⋊C3
C1C22

Generators and relations for C22×C52⋊C3
 G = < a,b,c,d,e | a2=b2=c5=d5=e3=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c3d3, ede-1=c-1d >

25C3
3C5
3C5
25C6
25C6
25C6
3C10
3C10
3C10
3C10
3C10
3C10
25C2×C6
3C2×C10
3C2×C10

Smallest permutation representation of C22×C52⋊C3
On 60 points
Generators in S60
(1 34)(2 35)(3 31)(4 32)(5 33)(6 36)(7 37)(8 38)(9 39)(10 40)(11 41)(12 42)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 49)(20 50)(21 51)(22 52)(23 53)(24 54)(25 55)(26 56)(27 57)(28 58)(29 59)(30 60)
(1 19)(2 20)(3 16)(4 17)(5 18)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(31 46)(32 47)(33 48)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(41 56)(42 57)(43 58)(44 59)(45 60)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)
(1 2 3 4 5)(6 9 7 10 8)(16 17 18 19 20)(21 24 22 25 23)(31 32 33 34 35)(36 39 37 40 38)(46 47 48 49 50)(51 54 52 55 53)
(1 14 8)(2 15 10)(3 11 7)(4 12 9)(5 13 6)(16 26 22)(17 27 24)(18 28 21)(19 29 23)(20 30 25)(31 41 37)(32 42 39)(33 43 36)(34 44 38)(35 45 40)(46 56 52)(47 57 54)(48 58 51)(49 59 53)(50 60 55)

G:=sub<Sym(60)| (1,34)(2,35)(3,31)(4,32)(5,33)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60), (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,2,3,4,5)(6,9,7,10,8)(16,17,18,19,20)(21,24,22,25,23)(31,32,33,34,35)(36,39,37,40,38)(46,47,48,49,50)(51,54,52,55,53), (1,14,8)(2,15,10)(3,11,7)(4,12,9)(5,13,6)(16,26,22)(17,27,24)(18,28,21)(19,29,23)(20,30,25)(31,41,37)(32,42,39)(33,43,36)(34,44,38)(35,45,40)(46,56,52)(47,57,54)(48,58,51)(49,59,53)(50,60,55)>;

G:=Group( (1,34)(2,35)(3,31)(4,32)(5,33)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60), (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,2,3,4,5)(6,9,7,10,8)(16,17,18,19,20)(21,24,22,25,23)(31,32,33,34,35)(36,39,37,40,38)(46,47,48,49,50)(51,54,52,55,53), (1,14,8)(2,15,10)(3,11,7)(4,12,9)(5,13,6)(16,26,22)(17,27,24)(18,28,21)(19,29,23)(20,30,25)(31,41,37)(32,42,39)(33,43,36)(34,44,38)(35,45,40)(46,56,52)(47,57,54)(48,58,51)(49,59,53)(50,60,55) );

G=PermutationGroup([[(1,34),(2,35),(3,31),(4,32),(5,33),(6,36),(7,37),(8,38),(9,39),(10,40),(11,41),(12,42),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,49),(20,50),(21,51),(22,52),(23,53),(24,54),(25,55),(26,56),(27,57),(28,58),(29,59),(30,60)], [(1,19),(2,20),(3,16),(4,17),(5,18),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(31,46),(32,47),(33,48),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(41,56),(42,57),(43,58),(44,59),(45,60)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60)], [(1,2,3,4,5),(6,9,7,10,8),(16,17,18,19,20),(21,24,22,25,23),(31,32,33,34,35),(36,39,37,40,38),(46,47,48,49,50),(51,54,52,55,53)], [(1,14,8),(2,15,10),(3,11,7),(4,12,9),(5,13,6),(16,26,22),(17,27,24),(18,28,21),(19,29,23),(20,30,25),(31,41,37),(32,42,39),(33,43,36),(34,44,38),(35,45,40),(46,56,52),(47,57,54),(48,58,51),(49,59,53),(50,60,55)]])

44 conjugacy classes

class 1 2A2B2C3A3B5A···5H6A···6F10A···10X
order1222335···56···610···10
size111125253···325···253···3

44 irreducible representations

dim111133
type++
imageC1C2C3C6C52⋊C3C2×C52⋊C3
kernelC22×C52⋊C3C2×C52⋊C3C102C5×C10C22C2
# reps1326824

Matrix representation of C22×C52⋊C3 in GL4(𝔽31) generated by

1000
03000
00300
00030
,
30000
0100
0010
0001
,
1000
0200
0080
0002
,
1000
0200
00160
0001
,
25000
0010
0001
0100
G:=sub<GL(4,GF(31))| [1,0,0,0,0,30,0,0,0,0,30,0,0,0,0,30],[30,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,2,0,0,0,0,8,0,0,0,0,2],[1,0,0,0,0,2,0,0,0,0,16,0,0,0,0,1],[25,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0] >;

C22×C52⋊C3 in GAP, Magma, Sage, TeX

C_2^2\times C_5^2\rtimes C_3
% in TeX

G:=Group("C2^2xC5^2:C3");
// GroupNames label

G:=SmallGroup(300,41);
// by ID

G=gap.SmallGroup(300,41);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,5,973,1439]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^5=d^5=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^3*d^3,e*d*e^-1=c^-1*d>;
// generators/relations

Export

Subgroup lattice of C22×C52⋊C3 in TeX

׿
×
𝔽